博客
关于我
Leetcode|70. 爬楼梯【笔记】
阅读量:712 次
发布时间:2019-03-21

本文共 1026 字,大约阅读时间需要 3 分钟。

爬楼梯问题解析

爬楼梯问题要求我们计算爬到n阶楼梯的不同方法数,每次可以爬1或2阶台阶。这个问题可以通过斐波那契数列来解决,其解答方法包括递归、动态规划、矩阵快速幂等。

4种常见解法:

  • 递归方法

    递归的思路是用费波那契的性质: f(n) = f(n-1) + f(n-2)
    例子:

    import functools@functools.lru_cache(maxsize=None)def climbStairs(n: int) -> int:    if n == 1:        return 1    if n == 2:        return 2    return climbStairs(n - 1) + climbStairs(n - 2)
  • 动态规划优化

    使用动态规划存储前两步结果,节省空间。
    例子:

    def climbStairs(n: int) -> int:    if n == 1 or n == 2:        return n    a, b, temp = 1, 2, 0    for i in range(3, n + 1):        temp = a + b        a = b        b = temp    return temp
  • 斐波那契公式

    使用矩阵快速幂或公式直接计算。
    例子:

    import mathdef climbStairs(n: int) -> int:    if n < 2:        return 1    sqrt5 = math.sqrt(5)    return int(( (1 + sqrt5) ** (n + 1) - (1 - sqrt5) ** (n + 1) ) / (2 * sqrt5))
  • 斐波那契数列的通项

    借助斐波那契数列的通项计算。
    例子:

    import mathdef climbStairs(n: int) -> int:    if n == 1:        return 1    elif n == 2:        return 2    elif n < 0:        return 0    return _fib(n + 1)
  • 关键点总结:

    • 问题基于斐波那契数列。
    • 递归角度计算,需缓存优化。
    • 动态规划优化空间使用,常数空间。
    • 斐波那契公式适用于大数计算。
    • 动态规划常数空间优化方案较为高效。

    转载地址:http://pgaez.baihongyu.com/

    你可能感兴趣的文章
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    Nuxt Time 使用指南
    查看>>
    NuxtJS 接口转发详解:Nitro 的用法与注意事项
    查看>>
    NVelocity标签使用详解
    查看>>
    NVelocity标签设置缓存的解决方案
    查看>>
    Nvidia Cudatoolkit 与 Conda Cudatoolkit
    查看>>
    NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
    查看>>
    NVIDIA-cuda-cudnn下载地址
    查看>>
    nvidia-htop 使用教程
    查看>>
    nvidia-smi 参数详解
    查看>>
    Nvidia驱动失效,采用官方的方法重装更快
    查看>>
    nvmw安装node-v4.0.0之后版本的临时解决办法
    查看>>
    nvm切换node版本
    查看>>
    nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
    查看>>
    ny540 奇怪的排序 简单题
    查看>>
    NYOJ 1066 CO-PRIME(数论)
    查看>>
    NYOJ 737:石子合并(一)(区间dp)
    查看>>
    nyoj------203三国志
    查看>>
    nyoj58 最少步数
    查看>>
    OAuth 及 移动端鉴权调研
    查看>>